God Does Not Play Dice

Einstein's Still Topical Critique of Quantum Mechanics

There is hardly a remark by Einstein as famous as his statement that God does not play dice. Not only is it included in many portrayals of Einstein's life and work, it has even provided the title for a

Max Born, around 1931 number of books on issues of modern physics and mathematics. The popularity of the sentence stands in notable contrast to the rather private context from which it originates. Einstein did not so much elucidate his comment in his writings on physics as he implemented it in his correspondence, and even more frequently in oral discussions with other physicists. The subject was the "statistical interpretation" of

the atomic theory established in the 1920s known as "quantum mechanics." There is much to suggest that Einstein directed this remark against a view represented by this interpretation and still held in physics today: the belief that in the world of the very small, there are no causes for the spatial-temporal occurrence of individual events. For a long time Einstein's critique was held to be reactionary in the face of the innovations and successes of quantum mechanics. Einstein, thus the general opinion, was a representative of an antiquated worldview, whose proximity to Spinoza's determinism made it irreconcilable with the worldview of modern physics. In the last decades, however, scholars have expressed misgivings about this opinion, which deserve to be taken

seriously. Einstein's views on modern quantum mechanics (the same quantum mechanics still valid today) have piqued renewed interest on the part of many scholars.

The shift in the attitudes of scholarship to Einstein's arguments with quantum mechanics throws another light on his God who does not play dice. The more recent works emphasize that Einstein's critique of statistical interpretation is not the expression of an untenable view of physics, but rather refers to future potential developments of atomic theory, which still remain to be achieved. This also gives new meaning to the sentence about God not playing dice.

Similar to the manner in which Einstein left this remark unexplained, however, his entire position on quantum mechanics has not remained unam-

remark unexplained, however, his entire position on quantum mechanics has not remained unambiguous. His dice metaphor provides latitude for opposing points of view. On the one hand it can be linked with recent results of research; on the other it points unchangingly to the reactionary elements in Einstein's thought. I will turn first to these latter elements, and then look at the opposing interpretation, which picks up on recent results.

Isn't Chance at the Root of Natural Phenomena?

If one looks more closely at the subject of his criticism, it is not surprising that Einstein's critique of statistical interpretation seemed antiquated to his contemporaries. The interpretation he rejects picks up on perhaps the most revolutionary finding in the atomic physics of the past century: The individual events of atomic physics which have been measured – e.g. radioactive decay and the deflection of particle beams – can be predicted statistically, but not with precision. The point of time when a radioactive atom emits a certain particle, for instance, is chance in the mathematical sense; in principle, the point in time is arbitrary. Only the probabilities of emission can be calcu-

lated, and with a large number of particles this can result in a high precision of predicted measurement values.

Probabilities were introduced to physics long before quantum mechanics. They already played a key role in the atomic theories of 19th century classical physics, with which Einstein was extremely well acquainted. Statistical assumptions about the motions of the invisible atoms, distributed by chance, were used to explain measurable

this state? The dice metaphor stands for this consideration. If the conditions of the motions of a rolled dice were known well enough, it would be possible to predict how the dice would fall. This would then reveal how chance is produced according to causal laws. Formulated as a paradox, chance would lose any element of chance. But God already has this knowledge. Thus what humans see as a roll of the dice is, from a divine perspective, not chance at all.

Albert Einstein in Leiden, at the end of 1920s (photo: Paul Ehrenfest)

Niels Bohr and

heat phenomena with classical theories. An increase in the temperature of a gas, for instance, was traced back to an increase in the average velocities of the gas atoms. It was believed that the knowledge about the motion of individual atoms, while not available at that time, would be obtained in the future. Why should it not be possible to determine the state of motion of an atom exactly and specify all causes that led to

The statistical interpretation of quantum mechanics asserts the inapplicability of such ideas to the field of the smallest dimensions. According to this interpretation, mathematically calculated probabilities are not an expression of ignorance about the state of atomic objects, but rather a characteristic of their state. All his life Einstein disagreed with this, because, in his view, one of the tasks of a theory is to give causes for the phenomena it

God Does Not Play Dice

412 EINSTEIN'S WORLD TODAY

God Does Not Play Dice

Albert Einstein in the library on Haberlandstrasse 1929

describes. One had to leave open the possibility of later providing a deterministic foundation for the formulation of any physical theory.

With this view Einstein falls back on the ideas of 19th century classical physics and on the worldview associated with it, of a strict system of natural laws, which is effective on a fundamental level and does not provide any room for coincidental events. In this sense his remark that God does not play dice refers to an outdated agenda for the deterministic explanation of nature.

Or Are Dice Not at the Root of Chance?

More recent history of science research has shown, however, that Einstein's critique is not exhausted in its backward-oriented, problematic elements. In 1986 Arthur Fine presented significant arguments to this end in his highly regarded book The Shaky Game. Einstein, Realism and the Quantum Theory. According to Fine's analyses, Einstein does not object to the mathematical

formalism of quantum mechanics, but rather to its conception as a complete theory in need of no further elaboration.

Einstein links his rejection of statistical interpretation's claim to integrity with the conviction that microphysical phenomena require a new kind of theory. In his view, the basic conceptualization of quantum mechanics should not be improved through minor corrections, but rather replaced by another "point of departure." Late formulations from the 1940s and 1950s suggest that he believed atomic theory would not be applicable in the future because of the still existing structural analogies and contextual relationships to classical physics. With this Einstein wanted to turn the tables on the critique directed against him: not his search for a realistic and causal theory of microphysics, but rather quantum mechanics in its present form would be far too bound up with a traditional conceptualization.

His previous rejection of what he called the "interference explanation" could also speak for a thrust

in this direction. It goes back to Werner Heisenberg and is still quite influential even today. According to this interpretation, the acausal character of measurements in atomic physics is a result of the fact that the measurement process inevitably and uncontrollably interferes with the objects it is

Werner Heisenberg around 1958 (photo: Fritz Eschen)

supposed to measure. What is dubious about this assumption is the tacit prerequisite that the objects had classically definable local and pulse characteristics before their interaction with the measurement apparatus. Accordingly, the acausal

character would not appear until after the fact and (in contrast to "statistical interpretation") not belong to the nature of the objects. By rejecting the interference explanation, Einstein intuitively thus one could perceive his critique - abandons the attempt to ground the assertion of microphysical processes' supposedly undeceivable acausality by linking it back to ideas of classical physics.

From this perspective, his comment that God does not play dice appears in another light. The metaphor of playing dice expresses the conviction that coincidences are brought forth by nature, which is itself causally composed, in analogy to classical physics. If the conditions of the movements of the dice could be recorded exactly, then it would be possible to recognize the causes from which the results of each roll of the dice necessarily must proceed. Similar considerations can be related to the interference explanation: if interference through measurement could be minimized, then the deterministic basic structure of nature would be revealed. But God does not play dice. If the observable atomic coincidences are based on anything, it cannot be of anything like a dice game, whose causes can be researched in principle. Today it remains unclear whether the contingency of atomic phenomena is part of their nature or whether it results from a process that is perhaps not coincidental. Einstein's comment and its effect have made a great contribution to keeping us aware that the solution of this problem is one of the tasks of future physics.

CHIEF ENGINEER
OF THE UNIVERSE

Albert Einstein

ONE HUNDRED AUTHORS FOR EINSTEIN

History of Knowledge is a new series from Wiley-VCH.

Internationally acclaimed experts bring new perspectives to the history of knowledge and introduce readers to hitherto unknown worlds of research and its conflictual history. The series is published in cooperation with the Max Planck Institute for the History of Science.

The three volumes Albert Einstein - Chief Engineer of the Universe:

Einstein's Life and Work in Context

One Hundred Authors for Einstein

Documents of a Life's Pathway

have been published to accompany the exhibition of the same title: Albert Einstein – Chief Engineer of the Universe, which was conceived by the Max Planck Institute for the History of Science on the occasion of The Einstein Year 2005.

Editor Jürgen Renn

Editorial Team Sabine Bertram, Lindy Divarci, Tanja Starkowski

Wolf-Dieter Mechler, Christoph Lehner (German edition)

Translators Dieter Brill, Robert Culverhouse, Lindy Divarci, Nancy Joyce, Susan Richter, Ann Robertson

Image Editors Hartmut Amon, Edith Hirte, Tanja Starkowski

Design/Production Regelindis Westphal Grafik-Design, Berlin

Antonia Becht, Berno Buff, Anja Gersmann, Norbert Lauterbach

Image Editing Satzinform, Berlin

Print/Binding NEUNPLUS1 - Verlag + Service GmbH, Berlin

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim and Max Planck Institute for the History of Science, Berlin

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Fritz Thyssen Stiftung

This publication was made possible due to the kind support of the Fritz Thyssen Foundation for the Advancement of Science, Cologne

Booktrade edition ISBN-10:3-527-40574-7 ISBN-13:978-3-527-40574-9

The essay volume accompanying the exhibition Albert Einstein - Chief Engineer of the Universe is published in German under the title Albert Einstein - Ingenieur des Universums. Hundert Autoren für Einstein Book trade edition ISBN- 3-527-40579-8

Further titles:

Jürgen Renn (Ed.): Albert Einstein – Ingenieur des Universums. Einsteins Leben und Werk im Kontext, Berlin: WILEY-VCH, 2005.

Book trade edition ISBN-3-527-40573-9

Jürgen Renn (Ed.): Albert Einstein – Ingenieur des Universums. Einsteins Leben und Werk im Kontext together with Dokumente eines Lebensweges, two-volume-set. Berlin: WILEY-VCH, 2005.

Book trade edition ISBN-3-527-40569-0

Jürgen Renn (Ed.): Albert Einstein - Chief Engineer of the Universe. Einstein's Life and Work in Context together with Documents of a Life's Pathway, two-volume-set. Berlin: WILEY-VCH, 2005.

Book trade edition ISBN-3-527-40571-2

CHIEF ENGINEER
OF THE UNIVERSE

Albert Einstein

ONE HUNDRED AUTHORS
FOR EINSTEIN

WILEY-VCH Verlag GmbH & Co. KGaA

Albert Einstein
Chief Engineer of the Universe
Exhibition in the Kronprinzenpalais, Berlin
from 16 May to 30 September 2005
www.einsteinausstellung.de

Organizers

Max-Planck-Society for the Advancement of Science

MAX PLANCK INSTITUTE FOR THE HISTORY OF SCIENCE

within the framework of the Einstein Year 2005

Design and Implementation

IGLHAUT PARTNER

www.iglhaut-partner.de

Sponsors

KULTURSTIFTUNG DES BUNDES

Federal Ministry of Education and Research

Stiftung Deutsche Klassenlotterie Berlin

An Exhibition without Walls – interactive and online – with the kind support of the Heinz Nixdorf Foundation

SIEMENS

Fritz Thyssen Stiftung

THE KLAUS TSCHIRA FOUNDATION GGMBH

ROBERT BOSCH STIFTUNG

as well as the Wilhelm and Else Heraeus Foundation, and the Central European University, Budapest

Exhibition Associates

Deutsches Museum

HEBREW UNIVERSITY JERUSALEM

UNIVERSITÀ DEGLI STUDI DI PAVIA

Media Associates

DW-TV DEUTSCHE WELLE

CONTENTS

Jürgen Renn

10 Preface

Gerhard Schröder

12 Address at the Launch of the Einstein Year on 19 January 2005

Yehuda Elkana

18 Einstein's Legacy

WORLDVIEW AND KNOWLEDGE ACQUISITION

Jürgen Renn, Ulf von Rauchhaupt

26 In the Laboratory of Knowledge

Henning Vierck

34 Comenius and Einstein as Educators

Katja Bödeker

38 Time in the Embryonic Stage

Renate Wahsner

44 Absolute Space: Mach vs. Newton

Falk Müller

48 Why Does a Light Mill Revolve? A Historical Look

Lidia Falomo, Carla Garbarino

52 The Leyden Jar

Lucio Fregonese

56 Volta's Battery in Einstein and Infeld's The Evolution of Physics

Fabio Bevilacqua, Stefano Bordoni

60 Electromagnetic Induction: Symmetries and Interpretations

Shaul Katzir

64 Electricity and Heat: The Connections Between Two Invisible Forces

Thomas Ju

68 Is Radiation Healthy or Does It Make Us Sick?

Klaus A. Vogel

74 The Revolution in the Image of the Earth

Enrico Antonio Giannetto

80 Giordano Bruno and the Origins of Relativity

lochen Büttne

84 Of Dwarves and Giants: The Transformation of Astronomical Worldviews

Matthias Schemme

90 Curved Universes Before Einstein: Karl Schwarzschild's Cosmological Speculations

Eberhard Knoblock

94 Truth and Freedom in Mathematics: The Emergence of Non-Euclidean Geometry in the 19th Century

Volkmar Schüller

98 Newton's Worldview

EINSTEIN - HIS LIFE'S PATH

Thomas de Padova

106 Riding on a Beam of Light

Gereon Wolters

110 Albert Einstein and Ernst Mach

Anne I. Kox

114 Hendrik Antoon Lorentz and Albert Einstein

Clayton Gearhart

116 Black-Body Radiation

Charlotte Bigg

120 Brownian Motion

lordi Cat

124 Einstein and James Clerk Maxwell: Unification, Imagination and Light

Stefan Sieme

128 "In the Brightest Arc Lamps and Incandescent Lights": The Electrical Factory Jakob Einstein und Cie.

Peter Galison

134 Einstein's Compass

Lea Cardinali

138 A Fifteen-Year-Old With Very Clear Ideas: Albert Einstein

Fabio Bevilacqua, Stefano Bordoni

142 Einstein's 1895 Pavia Paper

Volker Barth

46 Universal Exhibitions and the Popularization of Science in the 19th Century

David Kaiser

152 Einstein's Teachers

Robert Schulmann

56 Einstein's Swiss Years

Scott Walter

162 Henri Poincaré and the Theory of Relativity

Horst Kant

166 Albert Einstein and the Kaiser Wilhelm Institute for Physics in Berlin

Christian Sichau

170 6 m² Wall Space and Two Misplaced Artifacts: The Theory of Relativity in the Deutsches Museum

Domenico Giulini

174 What is Inertia?

Daniel Kennefick

178 Astronomers Test General Relativity: Light-bending and the Solar Redshift

Gerhard Hart

182 The Confirmation of the General Theory of Relativity by the British Eclipse Expedition of 1919

Hans Wilderotter

188 The Einstein Tower: Its Genesis and Function

Christian Sichau

194 The Gradual Disappearance of Einstein: Georg Joos' Experiments on the Theory of Relativity

Tilman Saue

200 Gravitational Lensing

Hubert Goenner

204 Einstein in Berlin: Unified Field Theory

Karl von Meyenn

206 Pauli and Einstein

Anton Zeilinger

212 Albert Einstein: Reluctant Creator of Quantum Technology

Michael Eckert

216 Einstein and Arnold Sommerfeld: Impressions from their Correspondence

Milena Wazec

222 "Einstein on the Murder List!": The Attacks on Einstein and the Theory of Relativity in 1922

Andreas Kleinert

226 Philipp Lenard and Johannes Stark: Two Nobel Laureates Against Einstein

Wolfgang Trageser

230 Why Einstein Did Not Go to Frankfurt

Dieter B. Herrmann

234 Einstein and Archenhold: Two Champions for the Popularization of the Natural Sciences

Karl Wolfgang Graft

238 The Automatic "Concrete People's Refrigerator" CITOGEL by Albert Einstein and Leo Szilard

Roger Highfield

242 Einstein's Women

Barbara Wolff

250 Albert Einstein and Music

Horst Bredekamp

256 Albert Einstein and the Avant-garde

Dieter Hoffmann

260 Einstein's Berlin

Wolf-Dieter Mechler

266 Einstein's Residences in Berlin

Erika Britzke

272 Einstein in Caputh

Britta Scheideler

280 Democrat with an Elitist Self-Image: Albert Einstein Between 1914 and 1933

Kenji Sugimoto

284 Einstein and Japan

Alfredo Tiomno Tolmasquim

290 Einstein's Journey to South America

Circe Mary Silva da Silva

294 The Theory of Relativity in Brazil: Reception, Opposition and Public Interest

C.V. Vishveshwara

298 Einstein and India

Ze'ev Rosenkranz

302 Albert Einstein and the German Zionist Movement

Christian Dirk

308 The Scapegoats' Attorney: Albert Einstein and his Commitment to the Cause of the Eastern Jews

Hanoch Gutfreund

314 Albert Einstein and the Hebrew University

Richard H. Beyler

320 The Physics Community in the National Socialist Era

Michael Schürin

324 Albert Einstein and His Fellow Expellees from the Kaiser Wilhelm Society

Barbara Pich

328 Succor and Political Action: How Einstein Related to Emigration

Gerald Holto

The Woman in Einstein's Shadow

Don Salisbury

336 Albert Einstein and Peter Bergmann

lörg Zaun

340 Josef Scharl and Albert Einstein: The Story of a Friendship

Tibor Erank

344 Closely Associated: Leo Szilard and Albert Einstein

Mark Walke

348 Albert Einstein, Carl Friedrich von Weizsäcker, and the Atomic Bomb

Erdmut Wizisl

350 An Excellent Play for the Spoiled Contemporaries: Einstein writes to Brecht about Galileo

John Stachel

354 Einstein and the American Left

Helge Kragh

358 Einstein as a Historian of Science

EINSTEIN'S WORLD TODAY

Jürgen Ehlers

364 Einstein's General Theory of Relativity in Contemporary Physics

Ulf von Rauchhaupt

368 Lots Happening in Spacetime

Tevian Drav

374 The Nature of Time in Relativity

Axel Jessner

378 Pulsars: Einstein's Cosmic Clocks

Gerhard Börner

382 Expansion: From Redshift to Dark Matter

Erhard Schol

388 The Standard Model of Contemporary Cosmology

Erhard Scholz

394 Einstein-Weyl Models of Cosmology

Günther Hasinger

398 Black Holes: The Beginning as Well as the End?

Bruno Bertotti

402 The Cassini Experiment: Investigating the Nature of Gravity

Bernard Schutz

406 Gravitational Waves

Gregor Schiemann

410 God Does Not Play Dice

Thomas de Padova

414 The Conseil Européen pour la Recherche Nucléaire (CERN)

David Cassidy

418 The Einstein Myths

Dieter Hoffmann

422 "1905 was his Great Year": Interview with Hans Bethe

Reiner Braun

426 The Russell-Einstein Manifesto

Horst Kant

430 German Scientists and the Effects of the Russell-Einstein Manifesto

Dieter Hoffmann

434 Einstein's Political File

Angelo Baracca

440 The Dark Side of Einstein's Heritage: The Nuclear Age

Danian Hu

444 Einstein and Relativity in China, 1917-1979

Diana Kormos-Buchwal

448 The Einstein Papers Project 1955-2005

454 STATEMENTS ON EINSTEIN'S HERITAGE

APPENDIX

458 Authors

460 Bibliography

467 Links

468 Name Index

471 Image Index